Kirchhoff ’ s Rule for Quantum Wires
نویسندگان
چکیده
In this article we formulate and discuss one particle quantum scattering theory on an arbitrary finite graph with n open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with n channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for incoming plane waves of energy E > 0 is explicitly given in terms of the boundary conditions and the lengths of the internal lines. It is shown to be unitary, which may be viewed as the quantum version of Kirchhoff's law. We exhibit covariance and symmetry properties. It is symmetric if the boundary conditions are real. Also there is a duality transformation on the set of boundary conditions and the lengths of the internal lines such that the low energy behaviour of one theory gives the high energy behaviour of the transformed theory. Finally we provide a composition rule by which the on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its subgraphs. All proofs only use known facts from the theory of self-adjoint extensions, standard linear algebra, complex function theory and elementary arguments from the theory of Hermitean symplectic forms.
منابع مشابه
Landauer-type transport theory for interacting quantum wires: application to carbon nanotube y junctions.
We propose a Landauerlike theory for nonlinear transport in networks of one-dimensional interacting quantum wires (Luttinger liquids). A concrete example of current experimental focus is given by carbon nanotube Y junctions. Our theory has three basic ingredients that allow one to explicitly solve this transport problem: (i) radiative boundary conditions to describe the coupling to external lea...
متن کاملConductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملConductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملar X iv : m at h - ph / 9 80 60 13 v 2 1 5 O ct 1 99 9 Kirchhoff ’ s Rule for Quantum Wires
In this article we formulate and discuss one particle quantum scattering theory on an arbitrary finite graph with n open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with n channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for inco...
متن کاملGeneralized Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system using arbitrary resistors
The Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system has been introduced as a simple, very low cost and efficient classical physical alternative to quantum key distribution systems. The ideal system uses only a few electronic components-identical resistor pairs, switches and interconnecting wires-in order to guarantee perfectly protected data transmission. We show that a generalize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008